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1.1 INTRODUCTION

NASA is investigating new paradigms for future space exploration, heavily focused
on the (still) emerging technologies of autonomous and autonomic systems [47, 48,
49]. Missions that rely on multiple, smaller, collaborating spacecraft, analogous to
swarms in nature, are being investigated to supplement and complement traditional
missions that rely on one large spacecraft [16]. The small spacecraft in such mis-
sions would each be able to operate on their own to accomplish a part of a mission,
but would need to interact and exchange information with the other spacecraft to
successfully execute the mission.

This new systems paradigm offers several advantages:

• the ability to explore environments and regions in space where traditional craft
would be impractical,
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• greater mission redundancy (and, consequently, greater protection of assets),
and

• reduced costs and risk,

to name but a few. Examples of concept swarm missions include

• the use of autonomous unmanned air vehicles (UAVs) flying approximately
one meter above the surface of Mars, which will cover as much of the surface
of Mars in seconds as the now-famous Mars rovers did in their entire time on
the planet;

• the use of armies of tetrahedral walkers to explore the surface of Mars and the
Moon [15];

• constellations of satellites flying in formation; and

• the use of miniaturized pico-class spacecraft to explore the asteroid belt, where
heretofore it has been impossible to send exploration craft without the unac-
ceptably high likelihood of loss [16].

However, these new approaches to exploration simultaneously pose many chal-
lenges. These missions will be unmanned and highly autonomous. Many of them
will be sent to parts of the solar system where manned missions are simply not possi-
ble within the foreseeable limits of technology, and to destinations where the round-
trip delay for communications to spacecraft exceeds 40 minutes, meaning that the
decisions on responses to exploration opportunities as well as problems and undesir-
able situations must be made in situ rather than from ground control on Earth.

The degree of autonomy and intelligence necessary for such missions would
require an unprecedented amount of testing of any developed (software and hard-
ware) systems. Furthermore, with learning and autonomic properties—such as self-
optimizing and self-healing—emergent behavior patterns simply cannot be fully pre-
dicted. Consequently, these missions will be orders of magnitudes more complex
than traditional single-spacecraft missions, and verifying these new types of mis-
sions will be infeasible using traditional techniques. The authors believe that for-
mal specification techniques and formal verification will play important roles in the
future development of NASA space exploration missions. Formal methods would
enable software assurance and proof of correctness of the behavior of swarms, even
when (within certain bounds) this behavior is emergent (as a result of composing a
large number of interacting entities, producing behavior that, absent extraordinary
design and verification measures, was not foreseen). Formal models derived may
also be used as the basis for automating the generation of much of the code for the
mission [25].

To address the challenge in verifying these types of missions, a NASA project,
Formal Approaches to Swarm Technology (FAST), investigated formal methods for
use in such missions [34, 35, 36, 37, 38, 41, 42]. A NASA concept mission, Au-
tonomous Nano-Technology Swarm (ANTS), was used as an example mission to be
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specified and verified [15, 16, 17]. An effective formal method for use on the ANTS
mission would have to be able to predict the emergent behavior of 1000 agents op-
erating as a swarm, as well as the behavior of the individual agents. Crucial to
the mission would be autonomic properties and the ability to modify operations au-
tonomously to reflect the changing conditions and goals of the mission.

This chapter gives an overview of swarm technologies and the ANTS swarm-
based mission concept, presents the results of an evaluation of a number of for-
mal methods for verifying swarm-based missions, and proposes an integrated formal
method for verifying swarm-based systems.

1.2 SWARM TECHNOLOGIES

Swarms [3, 4] consist of a large number of simple agents that have local interac-
tions with each other and the environment. There is no central controller direct-
ing the swarm and no one agent has a global view; the simple interactions give
rise to “emergent behaviors” and dynamic self-organization of the swarm. Emer-
gent behavior is observed in insects and flocks of birds. Bonabeau et al. [8], who
studied self-organization in social insects, state that “complex collective behaviors
may emerge from interactions among individuals that exhibit simple behaviors” and
describe emergent behavior as “a set of dynamical mechanisms whereby structures
appear at the global level of a system from interactions among its lower-level compo-
nents.” The emergent behavior is sometimes referred to as the macroscopic behavior
and the individual behavior and local interactions as the microscopic behavior.

Agent swarms are often used as a modeling technique and as a tool to study com-
plex systems [22]. In swarm simulations, a group of interacting agents [50] (often
homogeneous or near-homogeneous) is studied relative to their emergent behavior.
Swarm simulations have supported the study of flocks of birds [11, 33], business
and economics [31], and ecological systems [43]. In swarm simulations, each of the
agents is given certain parameters that it tries to maximize. In terms of bird swarms,
each bird tries to find another bird to fly with, and then will fly off to one side and
slightly higher to reduce its drag, and eventually the birds form flocks. Swarms are
also being investigated for use in applications such as telephone switching, network
routing, data categorizing, and shortest path optimizations [7].

In intelligent swarms, the individual members of a swarm exhibit intelligence
[6, 7]. With intelligent swarms, members may be heterogeneous or homogeneous.
Due to their differing environments, swarm members, even if initially they are ho-
mogeneous, may learn different things and develop different goals, and thereby the
swarm may become heterogeneous. A swarm that is homogeneous from the start
(such as the NASA concept mission described below) will possess different capabil-
ities as well as a possible social structure. This makes verifying such systems even
more difficult, since the swarms are no longer made up of homogeneous members
with limited intelligence and communications.

The emergent behavior of swarms can be unpredictable. Though swarm behaviors
are the combination of often simple individual behaviors, they can, when aggregated,
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Figure 1.1 ANTS Mission Concept

form complex and often unexpected behaviors. Verifying intelligent swarms will be
even more difficult, not only due to the greater complexity of each member, but also
due to the complex interaction of a large number of intelligent elements. Intelli-
gent swarms possess a huge state space, and since the elements may be in “learning
mode”, the behavior of the individual elements and the emergent behavior of the
swarm may be constantly changing and difficult to predict. Accurately predicting
these behaviors, however, will be very important to mission developers in assuring
that these missions operate safely and as planned.

The remainder of this section gives an overview of the NASA ANTS concept
swarm-based mission and the difficulty in specifying such a mission. We are using
the ANTS mission as an example test-bed and case study, for the purpose of eval-
uating multiple formal methods in the specification, validation, and verification of
swarm-based missions.

1.2.1 ANTS Mission Overview

The Autonomous Nano-Technology Swarm (ANTS) concept mission [15, 16, 17]
would involve the launch of a swarm of autonomous pico-class (approximately 1kg)
spacecraft that would explore the asteroid belt for asteroids with certain scientific
characteristics. Figure 1.1 gives an overview of the ANTS mission [48]. In this
mission, a transport ship, launched from Earth, will travel to a point in space where
net gravitational forces on small objects (such as pico-class spacecraft) are negligible
(a solar-system Lagrangian point). From this point, 1000 spacecraft, that have been
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manufactured en route from Earth, will be launched into the asteroid belt. Because
of their small size, each spacecraft will carry just one specialized instrument for
collecting a specific type of data from asteroids in the belt.

To implement this mission, a heuristic approach is being considered that provides
a social structure to the swarm, with hierarchical behavior analogous to colonies or
swarms of insects, and with some spacecraft directing others. Artificial-intelligence
technologies such as genetic algorithms, neural nets, fuzzy logic, and on-board plan-
ners are being investigated to assist the mission to maintain a high level of autonomy.
Crucial to the mission will be the ability to modify its operations autonomously to
reflect the changing nature of the mission and the distance and low bandwidth of
communications back to Earth. Approximately 80 percent of the spacecraft will be
workers that will carry the specialized instruments (e.g., a magnetometer, a sensor
in the x-ray, gamma-ray, or visible/IR band, or a neutral mass spectrometer) and that
will obtain specific types of data. Some will be coordinators (called rulers or leaders)
that have rules that will decide the types of asteroids and data the mission is interested
in and that will coordinate the efforts of the workers. The third type of spacecraft are
messengers that will coordinate communication between the rulers and workers, and
communications with the mission control center on Earth (also known as “ground
control”).

Many things can happen when an ANTS team encounters an asteroid. A space-
craft can do a flyby and do opportunistic observations. The flyby can be used to
first determine whether the asteroid is of interest before sending an entire team to the
asteroid, and whether, due to the nature of the instrument on the spacecraft, only a
flyby is necessary. If the asteroid is of interest, an imaging spacecraft will be sent
to the asteroid to ascertain its exact dimensions and features and to create a rough
model to be used by other spacecraft for maneuvering around the asteroid. Other
teams of spacecraft will then coordinate to finish studying and mapping the asteroid
to form a complete model.

1.2.2 Specifying and Verifying ANTS

The above is a very simplified description of the ANTS mission. For a more detailed
description, the interested reader is directed to [40, 48], or to the ANTS web-site.
As can be seen from the brief exposition above, ANTS is a highly complex system
that poses many significant challenges. Not least amongst these are the complex in-
teractions between heterogeneous components, the need for continuous re-planning,
re-configuration and re-optimization, the need for autonomous operation without in-
tervention from Earth, and the need for assurance of the correct operation of the
mission.

In missions such as ANTS that will be highly autonomous and out of contact
with ground control for extended periods of time, errors in the software may not be
observable or correctable after launch. Consequently, a high level of assurance is
necessary for these missions before they are launched. Testing of space exploration
systems is done through simulations, since it would be impractical or impossible
to test them in their end environment. Although these simulations are of very high
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quality, often very small errors get through and can result in the loss of an entire
mission, as is thought to have happened with the Mars Polar Lander Mission [5],
where the absence of one line of code in the flight software may have resulted in the
loss of the entire mission. In the report on the loss of the Mars Polar Lander [12], it
is stated that

it is important to recognize that space missions are a “one strike and you are out”
activity. Thousands of functions can be correctly performed and one mistake can
be mission catastrophic.

and
A thorough test and verification program is essential for mission success.

Complex missions such as ANTS exacerbate the difficulty of finding errors, and
will require new mission verification methods to provide the level of software assur-
ance that NASA requires to reduce risks to an acceptable level. Many of the ANTS
behaviors, including those that produce race conditions, for example, are time-based
and only occur when processes send or receive data at particular times or in a partic-
ular sequence, or after learning occurs. Errors under such conditions can rarely be
found by inputting sample data and checking for correct results. To find these errors
through testing, the software processes involved would have to be executed in all
possible combinations of states (state space) that the processes could collectively be
in. Because the state space is exponential (and sometimes factorial) to the number of
states, it becomes essentially untestable with a relatively small number of processes.
Traditionally, to get around the state explosion problem, testers have artificially re-
duced the number of states of the system and approximated the underlying software
using models. This reduces the fidelity of the model and can mask potential errors.

A significant issue for specifying (and verifying) swarm behavior is support for
analysis of and identification of emergent behavior. The idea of emergence is well
known from biology, economics, and other scientific areas. It is also prominent
in computer science and engineering, but the concept is not so well understood by
computer scientists and engineers, although they encounter it regularly. Emergent
behavior has been described as “system behavior that is more complex than the be-
havior of the individual components ... often in ways not intended by the original
designers [32].” This means that when interacting components of a system whose
individual behavior is well understood are combined within a single environment,
they can demonstrate behavior that can be unforeseen or not explained from the be-
havior of the individual components. The corollary of this is that making changes
to components of a system of systems, or replacing a sub-system within a system
of systems, may often have unforeseen, unexpected, and completely unexplained
ramifications for both overall system behavior and the behavior of other subsystems.

A formal specification for swarm-based missions will need to be able to track the
goals of the mission as they change and be able to modify the model of the universe as
new data comes in. The formal specification will also need to allow for specification
of the decision-making process to aid in the decision as to which instruments will be
needed, at what location, with what goals, etc. Once written, the formal specification
must be usable to prove properties of the system and check for particular types of
errors, and be usable as input to a model checker. The formal method must also
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be able to track the models of the leaders, and it must allow for decisions to be
made as to when the data collected have met the goals. To accomplish all of this,
an integration of four identified formal methods [34, 37, 38, 41, 42] seems to be the
best approach for verifying cooperating swarm-based systems.

1.3 NASA FORMAL APPROACHES TO SWARM TECHNOLOGY

PROJECT

The FAST project identified several important attributes needed in a formal approach
for verifying swarm-based systems [35, 38] and surveyed a wide range of formal
methods and formal techniques [34, 41, 42] to determine whether existing formal
methods, or a combination of existing methods, could be suitable for specifying and
verifying swarm-based missions and their emergent behavior. Various methods were
surveyed based on a small number of criteria that were determined to be important
in their application to intelligent swarms. These included:

• support for concurrency and real-time constraints;

• formal basis;

• (existing) tool support;

• past experience in application to agent-based or swarm-based systems; and

• algorithm support.

A large number of formal methods that support the specification of one of, but not
both, concurrent behavior and algorithmic behavior were identified. In addition,
there were a large number of integrated formal methods that have been developed
over recent years with the goal of supporting the specification of both concurrency
and algorithms. Based on the results of the survey, four formal methods were selected
to be used for a sample specification of part of the ANTS mission. These methods
were:

• Communicating Sequential Processes (CSP) [24, 26, 27],

• Weighted Synchronous Calculus of Communicating Systems (WSCCS) [46],

• X-Machines [28, 29, 30], and

• Unity Logic [13].

CSP was chosen as a baseline specification method because the team had signif-
icant experience and success [39, 23] in specifying agent-based systems with CSP.
WSCCS and X-Machines were chosen because they had already been used for spec-
ifying emergent behavior by others, with some success. Unity Logic was also cho-
sen because it had been successfully used for specifying concurrent systems and
was logic-based, in contrast with the other methods. Integrating the memory and
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transition function aspects of X-Machines with the priority and probability aspects
of WSCCS and other methods may produce a specification method that will allow
all the necessary aspects for specifying emergent behavior in the ANTS mission
and other swarm-based systems. In addition, available tools supported these formal
methods [38].

The approach being taken to integrate the formal methods was the viewpoint-
integration [18, 45] method. In this type of formal-methods integration, the base
formalisms of the methods are maintained, and relationships between the formalisms
are developed to reflect the new formal method. This approach preserves the strength
of the underlying methods, allows a seamless specification of the ANTS mission, and
allows the development of support tools using existing semantics of the methods.

Specification by viewpoints is also widely advocated as a useful method for deal-
ing with the complexity of specifying large systems. Each view specification de-
scribes an aspect (rather than a component or module) of the system, using a lan-
guage most suited to that view. A consequence of using this approach is that spec-
ifications of the same or related elements often appear in different views and must
adequately cross reference each other.

1.4 INTEGRATED SWARM FORMAL METHOD

The majority of formal notations currently available were developed in the 1970s
and 1980s and reflect the types of distributed systems being developed at that time.
Current distributed systems are evolving and may not be specifiable the same way
past systems have been specified [14]. Consequently, many researchers and practi-
tioners are combining formal methods into integrated (hybrid) approaches to address
the new features of distributed systems (e.g., mobile agents, swarms, and emergent
behavior).

Integrated approaches have been very popular in specifying concurrent and agent-
based systems. Integrated approaches often combine a process algebra or logic-based
approach with a model-based approach. The process algebra or logic-based approach
allows for easy specification of concurrent systems, while the model-based approach
provides strength in specifying the algorithmic part of a system. The following is
a partial list of integrated approaches that have been used for specifying concurrent
and agent-based systems:

• Communicating X-Machines [2],

• CSP-OZ (a combination of CSP and Object-Z [19]),

• Object-Z and Statecharts [10],

• Timed Communicating Object Z [20],

• Temporal B [9],

• Timed CSP [44],
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• Temporal Petri Nets (Temporal Logic and Petri Nets) [1], and

• ZCCS (a combination of Z and CCS [21]).

To illustrate the integration of CSP, WSCCS, X-Machines, and Unity Logic,
examples of different views of the ANTS mission are given below. These views
show how they can cross reference each other and how each can provide a different
view of the ANTS mission. CSP provides the inter-process communication view,
X-Machines provides the state machine and memory views, WSCCS provides the
probability and priority views, and Unity Logic the logic views. Variables that each
of them references, such as goals and models, will have additional notation or high-
lighting to indicate cross references to specifications by other views. For a longer
specification, color coding could be used. Since this is only a sample specification
for illustration purposes, only bold highlighting will be used. The following sections
give examples of these views based on the specifications presented in [37, 38, 42].

1.4.1 Communicating Sequential Processes View

The following is the top-level specification of the ANTS mission in CSP:

ANTSgoals = Leaderi,lgoals | |Messengerj,mgoals ||Workerk,wgoals ,

1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p.

where m is the number of leader spacecraft, n the number of messenger spacecraft,
and p the number of worker spacecraft. This specification shows that the ANTS mis-
sion starts, or is initialized, with a set of goals given to it by the principal investigator
and some of these goals are given to the leader (while some of these goals may not
be given to the leader because the goals are ground-based or not applicable to the
leader). In addition to goals, each of the spacecraft is given a name (in this case in
the form of a number) so that it can identify itself when communicating with other
ANTS spacecraft and the Earth.

For the viewpoint integration, the goals of ANTS will also be specified by the
X-Machine view of ANTS. The goals are highlighted here to indicate they are also
referenced in other views. The following gives the specifications for the communi-
cations of a leader with indications of where the specification and the variables are
used in other views.

1.4.1.1 Leader Specification The leader-spacecraft specification consists of the
communications process and the intelligence process:

Leaderi = LEADERCOMi , {}||LEADERINTELLIGENCEi,goals ,model

The communications process, LEADERCOM, specifies the behavior of the space-
craft as it relates to communicating with the other spacecraft and Earth, and specifies
a protocol between the spacecraft. The second process, LEADERINTELLIGENCE,
constitutes the intelligence of the leader; it maintains the goals and the models of
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the spacecraft and its environment, and specifies how they are modified during op-
erations. For each of the above processes, one of its parameters is a spacecraft-
group identifier, and other parameters represent sets that store conversations (empty
at startup), goals, and models. The models and goals are specified in the X-Machine
specifications, and the reasoning part of the LEADERINTELLIGENCE process is
specified in the WSCCS specifications.

The following gives the specifications for the communication process ofthe leader.

1.4.1.2 Leader Communication Specification A leader spacecraft may receive
messages from another leader, a worker, a messenger, or Earth. A message from any
other sender constitutes an error condition and the message is returned (it is assumed
that there is a mechanism that keeps an error message from being returned as an
error message, thus causing an endless loop). It is assumed that messages that are
relayed through a messenger from another spacecraft are marked as being sent from
the original sender and not the messenger. Leaders also maintain a set (“conv”) of
persistent messages to keep track of the current state of the conversations. Requests
may be made to other spacecraft for status, to move to a new location, change goals,
or return specific data. Requests may also be sent to other spacecraft for similar
actions.

Leader communication is specified via WSCCS, X-Machines, and Unity Logic,
and when a communication occurs, a change of state is executed from either the
reasoning state or the processing state. Also, if, while communicating, any of the
actions listed in the WSCCS, X-Machine, or Unity Logic specification occurs, then
a change is executed from the communicating state to either the reasoning state or the
processing state. Again, highlighting is used to indicate specifications in other views.
The rendezvous for each of the below CSP specifications also acts as a transition to
the WSCCS, X-Machine, or Unity Logic finite state machine.

The following is the top level specification of the leader communication.

LEADERCOMi,co-nv = leader.in?msg —>

case LEADERMESSAGE i,co-nv,Msg

if sender (msg) = LEADER
MESSENGERMESSAGE i,co-nv,Msg

if sender (msg) = MESSENGER
WORKERMESSAGE i,co-nv,Msg

if sender (msg) = WORKER
EARTHMESSAGEi,co-nv,Msg

if sender (msg) = EARTH
ERRORMES SAGE i,co-nv,Msg

otherwise

The above shows the messages from other spacecraft types that a leader may re-
ceive. The WSCCS, X-Machine, and Unity Logic views define the above “LEADER-
MESSAGE”, etc. as actions that change the state of the leader from either Reason-

ing or Processing to Communicating. The specification in Unity Logic also has
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predicates that express the conditions for passing messages. The above statements
are highlighted to indicate a link to another view.

The following processes further describe the messages that may be received from
other leaders. Messages sent from another leader may be one of two types: request
or informational. Requests may be issued for, among other things, information on
the leader’s model or goals, for resources (e.g., more workers), or for status. Mes-
sages may also be informational and may contain data concerning new goals or new
information for the agent’s model (pertaining, e.g., to a new discovery or a message
from Earth). This information needs to be examined by the intelligence process and
the model process to determine whether any updates to the goals or model need to
be made. Since X-machines also specify the goals and models, references to each of
them have links to the X-machine specification.

LEADER MESSAGEi,conv =
case LEADERINFORMATIONi,conv,,n,sg

if content (msg) = information

LEADERREQUEST Si,conv,,n,sg

if content (msg) = request
LEADERRECEIV Ei,conv,,n,sg

if content (msg) = replytorequest
ERRORMESSAGEi,conv,,n,sg

otherwise

Further specification of each of the above sub-processes follows.

LEADERINFORMATIONi ,conv =
leadermodeli ! (NEW INFO, msg)
—> goalschanneli !(NEWINFO,msg)
—> LEADERCOMi,conv

If the message is new information, then that information has to be sent to the
deliberative part of the agent to check whether the goals should be updated, as well
as to the model part to check whether any of the information requires updates to the
model. Again, since the model and goals are defined in other views (X-Machine)
and the communications causes state changes in the WSCCS, X-Machine, and Unity
Logic specifications, the channels above are highlighted.

LEADERREQUESTSi,conv,,n,sg =
case LEADERSTATUSREQ

if content (msg) = statusrequest
LEADERI NFOREQ i,conv ,,n,sg

if content (msg) = inforequest
LEADERRESOURCEREQ i,conv,,n,sg

if content (msg) = resourcerequest
ERRORMESSAGEi,conv,,n,sg

otherwise
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If the message is a request, then, depending on the type of request, different pro-
cesses are executed. An agent (e.g., a worker) may issue requests for status of the
spacecraft, requests for information on the leader’s goals or model, or requests for re-
sources (e.g., a request that some workers under the leader’s direction should form a
sub-team to investigate a particular asteroid, or that a messenger should be relocated
to perform communication functions). Since this specification is an abstraction of
lower level specifications, it does not affect specifications in other views.

LEADERSTATUSREQi,co-nv,-m,sg =
leaderi !reply (msg, currentstatus())
—> LEADERCOMi,co-nv

As shown above, if the request is for status, then the current spacecraft status
is sent back to the sender using a standard function that retrieves the status. The
leader ! reply part of the specification is a communication that causes a change of
state in the WSCCS, X-Machine, and Unity Logic specifications.

LEADERINFOREQi,co-nv,-m,sg =
case goalschanneli! (REQUEST, msg) —> LEADERCOMi,co-nv

if content (msg) = goalsrequest
leadermodeli! (REQUEST, msg) —> LEADERCOMi,co-nv

if content (msg) = modelrequest
ERRORMESSAGEi,co-nv

otherwise

For the LEADERINFOREQ process, if the request for information is for the
leader’s goals, a message is sent to the leader’s intelligence process to retrieve the
information, which is then sent to the requestor. If the request is for part of the
leader’s model, then a request is sent to the leader’s model process, which then sends
the model information to the requestor. The goals and the model are specified as part
of the X-Machine specification, and the communication causes a change of state in
the WSCCS, X-Machine, and Unity Logic specifications.

LEADERRESOURCEREQ i,co-nv,-m,sg =
goalschanneli! (RESOURCE, msg)
—> LEADERCOMi,co-nv

For resource requests, the goals of the leader must be checked to determine whether
giving up the resource would affect the leader’s current goals. The message is there-
fore sent to the intelligence process to check against the current goals, to update its
goals and model (in case it can give up the resources), and to reply to the requestor
as appropriate. The highlighted channel indicates that the goals are also specified
in the X-Machine view and that the communication causes a change of state in the
WSCCS, X-Machine, and Unity Logic specifications.
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LEADERRECEIVEi,conv,-,n,sy =
case LEADERSTATUSRECEIVED i,conv,-,n,sy

if content (msg) = statusreturned
LEADERINFORECEIVED i,conv,-,n,sy

if content (msg) = inforeturned
LEADERRESOURCERECEIVED i,conv,-,n,sy

if content (msg) = resourcerequestreturn
ERRORMES SAGE i,conv,-,n,sy

otherwise

After sending a request to other entities, a leader will receive messages back that
give requested status, information, or resources. The above LEADERRECEIVE is
the process that handles the messages that have been sent back. These messages have
to be sent to the deliberative part of the leader so the leader’s goals and models can
be updated. The communication changes the state machines in the other views, and
the Unity Logic specification also defines conditions for receiving messages from
other spacecraft.

LEADERSTATUSRECEIVED i,conv,-,n,sy =
goalschanneli! (STATUSRECEIVED, msg)
—> LEADERCOMi,conv

The LEADERSTATUSRECEIVED process is executed when the leader receives
a status message from another leader. When this happens, a message is sent to the
goals channel containing the message so that the goals and model can be updated.
The goals may need updating if the status indicates the worker is no longer able to
perform some of its functions. This channel is highlighted to indicate a specification
in the X-Machine view.

LEADERINFORECEIVED i,conv,-,n,sy =
goalschanneli! (INFORECEIVED, msg)
—> LEADERCOMi,conv

The LEADERINFORECEIVED process is executed when the leader receives
an informational message from another leader. As above, the message is sent to the
goals process for possible updates of the goals and leader’s model. This channel,
again, is highlighted to indicate a specification in a different view (X-Machine).

LEADERRESOURCERECEIVED i,conv,-,n,sy =
goalschanneli! (RESOURCERECEIVED, msg)
—> LEADERCOMi,conv

As with the above processes, when the LEADERRESOURCERECEIVED pro-
cess is executed, a message is sent to the goals process of the leader for updating of
the goals and model, and for taking action if necessary. This channel is highlighted
to indicate a specification in a different view (X-Machine).
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ERRORMESSAGEi,conv,m3y =
messengeri ! return (msg, error)
→ LEADERCOMi,conv

If a message does not match any of the other interactions, then an error message
is returned to the sending spacecraft. The error message is highlighted because a
communication occurs, which causes a state change in the WSCCS, X-Machine, and
Unity Logic views.

Messages to a leader from messengers, and messages to a leader from workers,
have specifications similar to the above: see [34, 41, 42].

1.4.2 Weighted Synchronous Calculus of Communicating Systems View

To model the ANTS leader spacecraft, WSCCS (Weighted Synchronous Calculus of
Communicating Systems), a process algebra, takes into account:

• The possible states (agents) of the leader;

• Actions in each agent-state that would qualify an agent to be “in” those states;

• Relative frequency of each action defined for an agent; and

• The priority of each action defined for an agent.

1.4.2.1 Actions Table 1.1 gives the actions, agent states, and view of priority on
the actions of a leader. All of these actions are reflected in other specification views.

Since the state part of the specification is similar to the X-Machine and Unity
Logic specifications, all changes in states in WSCCS would also affect the memory
and state changes both in the X-Machine specification and in the state machine of
Unity Logic, and would be subject to the predicates of Unity Logic. The above
highlighted actions cause transitions into the communicating state, are specified as
part of the CSP view, and indicate when the CSP specification would cause data to
be passed on a CSP channel. In addition, the predicates of Unity Logic specify their
own applicable preconditions. The reasoning and processing portions are also related
to the CSP specification in the LEADERINTELLIGENCE part of the specification
(which is not included in this report but given in [34, 41, 42].

Continuing with the WSCCS specification, given the information from Table 1. 1,
we define the various agent-states as

AgentD ≡ na : a.AgentA + nb : b.AgentB + n, : c.AgentC

Here, na is a weight of the form nw k where n is the relative frequency of the
action a, and k denotes the priority of action a, which would then turn agent D
into agent A. The addition seen here represents a type of choice between possible
actions. Thus, agent D may choose to perform action a, which would turn agent D
in to agent A. Agent D makes this choice with frequency n and priority k. Or agent
D may choose to perform action b, etc. Using this notation, the leader has agent
states defined by the following statements:



INTEGRATED SWARM FORMAL METHOD	 15

Table 1.1 Agent state and actions

Agent	 Actions leading to	 f p
State	 the agent state

Identity
Communicating SendMessageWorker 502

SendMessageLeader 502
SendMessageError 11
ReceiveMessageWorker 502
ReceiveMessageLeader 502
ReceiveMessageError 11

Reasoning	 ReasoningDeliberative 502
ReasoningReactive 502

Processing	 ProcessingSortingAndStorage 17 2
ProcessingGeneration 172
ProcessingPrediction 172
ProcessingDiagnosis 162
ProcessingRecovery 162
ProcessingRemediation 172

Communicating ≡
50ω3 : ReasoningDeliberative. Reasoning
+50ω 3 : ReasoningReactive.Reasoning
+50ω 2 : ReasoningDeliberative. Reasoning
+17ω 3 : ProcessingSortingAndStorage.Processing
+17ω 3 : ProcessingGeneration.Processing
+17ω 3 : ProcessingPrediction. Processing
+16ω4 : ProcessingDiagnosis. Processing
+16ω4 : ProcessingRecovery. Processing
+17ω4 : ProcessingRemediation. Processing

According to this statement, a leader, when in a communicating state, has the
option (is allowed) to perform any action from the set:

{ReasoningDeliberative, ReasoningReactive,
ProcessingSortingAndStorage, ProcessingGeneration,
ProcessingPrediction, ProcessingDiagnosis, ProcessingRecovery,
Proces singRemediation }

and that the communicating leader will perform ReasoningDeliberative with a
probability of 50 out of 200 [25%] (the total of all above listed frequencies) and
will give that action a priority of 3. The second term in the statements tells us that
the communicating leader will perform ReasoningReactive with the same 25%
probability and priority of 3. The symbol + in this notation denotes that the commu-
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nicating leader will make a choice between the various allowed actions, and that that
choice will be made based on the frequencies and priorities of each allowable action.
WSCCS is the only one of the views that takes into account probabilities and priority
of the state changes. The probabilities and priorities allow for the calculation of the
steady state of the system and therefore what the emergent behavior would be.

A transitional semantics defines what series of actions are valid for a given agent,
and allows us to interpret agents as finite state automata represented by a transition
graph where nodes represent the agents and the edges between represent the weights
and actions.

The agent’s transition is defined as:

D ⌈{a, b, c} 
a[n+ 

A ⌈{a, b, c}

where a [ -] is the probability of action a occurring and n is the sum of the relative
frequencies of the possible actions a, b, and c. Consider the transition written above.
This transition definition expresses that agent D can perform only action a, b, or
c. The probability of agent D performing action a is [ n° ] and the outcome of that
action is that agent D becomes agent A, who can perform only action a, b, or c.

The following is a portion of the specification for the communicating part of the
swarm. The rest of the communicating part and the processing and reasoning parts
are similar.

Communicating ⌈{ReasoningDeliberative, ReasoningReactive,
Processing SortingAndStorage, ProcessingGeneration,
ProcessingPrediction, ProcessingDiagnosis, ProcessingRecovery,

ReasoningReliverative[ 5
zoo ]

ProcessingRemediation}	 →

Reasoning ⌈{SendMessageWorker, SendMessageWorkerVIAMessenger,

SendMessageLeader, SendMessageLeaderVIAMessenger,
SendMessageError, ReceiveMessageWorker,
ReceiveMessageWorkerVIAMessenger, ReceiveMessageLeader,
ReceiveMessageLeaderVIAMessenger, ReceiveMessageError,
Processing SortingAndStorage, ProcessingGeneration,
ProcessingPrediction, ProcessingDiagnosis, ProcessingRecover,
Proce ssingRemediation}

The above statement about the communicating leader specifies that the commu-
nicating leader, when allowed the set of actions:

{ReasoningDeliberative, ReasoningReactive,
Processing SortingAndStorage, ProcessingGeneration,
ProcessingPrediction, ProcessingDiagnosis, ProcessingRecovery,
Proce ssingRemediation}

will choose the action ReasoningDeliberative with a probability of 50% and a
priority of 3; and that, when the action is performed, the communicating leader will
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transition to a reasoning leader who is allowed to choose from the set of actions given
below to then be able to transition to another state.

{SendMessageWorker, SendMessageWorkerVIAMessenger,
SendMessageLeader, SendMessageLeaderVIAMessenger,
SendMessageError, ReceiveMessageWorker,
ReceiveMessageWorkerVIAMessenger, ReceiveMessageLeader,
ReceiveMessageLeaderVIAMessenger, ReceiveMessageError,
ProcessingSortingAndStorage, ProcessingGeneration,
ProcessingPrediction, ProcessingDiagnosis, ProcessingRecovery,
Proces singRemediation }

For the other views, each time there is a transition, part of the CSP, X-Machine,
and Unity Logic specifications would represent how, and the conditions under which,
the communications would be performed.

1.4.2.2 Transition Graph A transition graph derived from these transitions for
the ANTS Leader Spacecraft is shown in Figure 1.2. (Nodes represent the agents
and the edges between represent the weights and actions.)

Figure 1.2	 Transition graph from WSCCS specification showing weights and
actions.
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1.4.3 X-Machines

X-Machines are defined as the following tuple:

L = (Input, Memory, Output, Q, 4), F, start, mo )

where the components of the tuple are defined as:

• Input, Memory, Output, are sets of data.

• Q is a finite set of states.

• 4) is a set of (partial) transition functions where each transition function maps
Memory × Input → Output × Memory.

• F is the next-state partial function, F : Q × 4) → Q.

• start ∈ Q is the initial state.

• mo ∈ Memory is the initial value of memory.

For the ANTS specification, the components of the X-Machine are defined as:

• Input = {worker, messenger, leader, error, Deliberative, Reactive,
SortAndStore, Generate, Predict, Diagnose, REcover, Remediate } .

• Memory is written as a tuple m = (Goals, Model) where Goals describes
the goals of the mission and Model describes the model of the universe main-
tained by the leader. The initial memory is denoted by (Goalso , Modelo ) .
When the goals and/or model changes, the new tuple will be denoted as m' =
(Goals ' , Model ' ) .

• Output = {SentMessageWorker, SentMessageMessenger,
SentMessageLeader, SentMessageError, ReceivedMessageWorker,
ReceivedMessageMessenger, ReceivedMessageLeader,
ReceivedMessageError, ReasonedDeliberatively, ReasonedReactively,
ProcessedSortingAndStoring, ProcessedGeneration,
ProcessedPrediction, ProcessedDiagnosis, ProcessedRecovery,
Proce ssedRemediation} .

• Q = {Start, Communicating, Reasoning, Processing } .

• 4) = {SendMessage, ReceiveMessage, Reason, Process} where these fun-
ctions are defined as in Table 1.2.

To see the Leader Spacecraft in these terms, consider Table 1.3 which depicts the
states, transition functions, and associated inputs, outputs, and memory. A transition
diagram for the ANTS Leader Spacecraft is shown in Figure 1.3. (Nodes represent
the states, and the edges between represent the transition functions.)

For viewpoint specification interactions, all of the above would affect either the
CSP specification, the WSCCS specification, or the Unity Logic specification. Since
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Table 1.2 Leader States and Transitions

Q	 4)	 Q ′

 = F'(Q, 4))
State	 the agent state

Start

Communicating

SendMessage
ReceiveMessage
Reason
Process
SendMessage
ReceiveMessage
Reason

Communicating
Communicating
Reasoning
Processing
Communicating
Communicating
Reasoning

Table 1.3 ANTS Role: Leader Spacecraft

State	 Transition
Functions

F'(Q, 4))

Function Definition
4)(m, σ) =

Start
Commun.	 Send Msg 4)(m, Worker) = (m ′ , SentMessageWorker)

4)(m, Messenger) = (m ′ , SentMessageMessenger)
4)(m, Leader) = (m ′ , SentMessageLeader)
4)(m, Error) = (m ′ , SentMessageError)

RecvMsg 4)(m, Worker) = (m ′ , SentMessageWorker)
4)(m, Messenger) = (m ′ , SentMessageMessenger)
4)(m, Leader) = (m ′ , SentMessageLeader)
4)(m, Error) = (m ′ , SentMessageError)

Reasoning	 Reasoning 4)(m, Deliberative) = (m ′ , ReasonedDeliberatively)
4)(m, Reactive) = (m ′ , ReasonedDeactively)

Processing	 Processing 4)(m, SortAndStore) = (m ′ , ProcessedSortingAndStoring)
4)(m, Generate) = (m′ , ProcessedGeneration)
4)(m, Predict) = (m ′ , ProcessedPrediction)
4)(m, Diagnose) = (m ′ , ProcessedDiagnosis)
4)(m, Recover) = (m′ , ProcessedRecovery)
4)(m, Remediate) = (m ′ , ProcessedRemediation)
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Figure 1.3 Transition diagram for the leader spacecraft as an X-Machine.

the states are the same (with the exception of the start state) any time there is a state
change in the X-Machine specification, the priorities and probabilities in the WSCCS
specification, as well as the Unity Logic state machine and predicates, would need
to be checked. Due to their similarities, the specifications could be combined with
the goals and model data added. For the CSP view, any time there is a change to
a communicating state, the communication specifications in CSP would take over,
particularly the passing of data over the channels. Similarly for Unity Logic, any
time there is a communication, the predicates for the logic would affect whether the
transition would be taken.

1.4.4 Unity Logic

To model the ANTS leader spacecraft with Unity Logic, we consider states of the
leader just as in WSCCS and X-Machine and other state-machine based specification
languages. In Unity Logic, we will consider the states of the leader and the actions
taken to put the leader in those states, but the notation will appear much closer to
classical logic.

Predicates are defined to represent the actions that would put the leader into its
various states (Table 1.4). Those predicates then become statements which, if true,
would mean that the leader had performed an action that put it into the corresponding
state (see Table 1.5).

The communicating part of the leader program would then be specified using the
following assertions (the reasoning and processing would be similar):
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Table 1.4 Predicates and meanings in X-Machine transition diagram.

Predicate	 Meaning

SendMessage(Leader, Worker)
SendMessageVIAMessenger(Leader, Worker)

SendMessage(Leader, Leader)

SendMessageVIAMessenger(Leader, Leader)

S endMessageError(Leader)
ReceiveMessage(Leader, Worker)

ReceiveMessageVIAMessenger(Leader, Worker)

ReceiveMessage(Leader, Leader)

ReceiveMessageVIAMessenger(Leader, Leader)

ReceiveMessageError(Leader)
ReasoningDeliberative(Leader)
ReasoningReactive(Leader)
ProcessingSortingAndStorage(Leader)

ProcessingGeneration(Leader)

ProcessingPrediction(Leader)

ProcessingDiagnosis(Leader)
ProcessingRecovery(Leader)
ProcessingRemediation(Leader)

A Leader sent a message to a Worker
A Leader sent a message to a Worker
by relaying it through a Messenger
A Leader sent a message to another
Leader
A Leader sent a message to another
Leader by relaying through a Messenger
A Leader sent a message in Error
A Leader received a message from a
Worker
A Leader received a message from a
Worker who relayed through a Messenger
A Leader received a message from
another Leader
The Leader received a message from
another Leader who relayed it through a
Messenger
A Leader received a message in Error
A Leader is reasoning deliberatively
A Leader is reasoning reactively
The Leader is processing by Sorting,
Classifying and/or Storing Data
A Leader is processing by Model
Generation
A Leader is processing by prediction of
asteroid properties, or by prediction of
resource (worker & comm.) availability
A Leader is processing for Diagnosis
A Leader is processing for Recovery
A Leader is processing for Remediation
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Table 1.5 Predicates and meanings in X-Machine transition diagram.

Program State	 Statements which, if true, lead to that program state

SendMessage (Leader, Worker)
SendMessageVIAMessenger(Leader, Worker)
SendMessage(Leader, Leader)
SendMessageVIAMessenger(Leader, Leader)
SendMessageError(Leader)

Communicating ReceiveMessage(Leader, Worker)
ReceiveMessageVIAMessenger(Leader, Worker)
ReceiveMessage(Leader, Leader)
ReceiveMessageVIAMessenger(Leader, Leader)
ReceiveMessageError(Leader)

Reasoning	 ReasoningDeliberative(Leader)
ReasoningReactive(Leader)
ProcessingSortingAndStorage(Leader)
ProcessingGeneration(Leader)

Processing ProcessingPrediction(Leader)
ProcessingDiagnosis(Leader)
ProcessingRecovery(Leader)
ProcessingRemediation(Leader)

[Communicating]ReasoningDeliberative(Leader) [Reasoning]
[Communicating]ReasoningReactive(Leader) [Reasoning]
[Communicating]ProcessingSortingAndStorage(Leader) [Processing]
[Communicating]ProcessingGeneration(Leader) [Processing]
[Communicating]ProcessingPrediction(Leader) [Processing]
[Communicating]ProcessingDiagnosis(Leader) [Processing]
[Communicating]ProcessingRecovery(Leader) [Processing]
[Communicating]ProcessingRemediation(Leader) [Processing]

Unity Logic then provides a logical syntax equivalent to propositional logic for
reasoning about these predicates and the states they imply, as well as for defining
specific mathematical, statistical, and other simple calculations to be performed. For
the view specification, the predicates would define the conditions when transitions
would take place. The state machine specified above is similar to the WSCCS and
X-Machine state machines and could be combined with them.

1.5 CONCLUSION

This project has shown how an integration of the formal methods Communicat-
ing Sequential Processes (CSP), Weighted Synchronous Calculus of Communicat-
ing Systems (WSCCS), X-Machines, and Unity Logic can specify and even pre-
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dict emergent behavior of a swarm-based mission such as the Autonomous Nano-
Technology Swarm (ANTS) concept mission. With CSP providing the inter-process
communication view, X-Machines providing the state machine and memory views,
WSCCS providing the probability and priority views, and Unity Logic the logic
views, these formal methods could provide what is needed for verifying swarms
of spacecraft or other swarm-based systems using a viewpoint integration.

There is overlap between the four formal methods, particularly the state machine
aspects of WSCCS, X-Machines, and Unity Logic. Thus, conserving integration or a
monolithic integration could provide a more integrated specification. The monolithic
integration starts by going back to the base formalisms (often the first order logic
definition of the language) and then merging the base formalisms and redefining the
semantics of the formalisms. With a conserving integration, the base formalisms
are integrated more loosely by preserving the base formalisms [45]. Budget and
time resources were not sufficient for completion of the work in this direction, but
this type of integration would reduce the overlap in the viewpoint specifications and
provide a tighter integration of the formal methods, with the complementary types
of formal methods each providing only their strengths, as described above.
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